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ABSTRACT

On the basis of the Navier-Stokes equation of motion, the equation of
continuity for a compressible fluid, and the Poisson equation for charge
densities, we investigate the spectral distributions of turbulgnt energy and
density fluctuations in a plasma with a strong ﬁagnetic field. Collision

dominated plasmas and collisionless plasmas are considered,

The nonlinear equations are solved by the use of a cascade decomposi-
tion; in which the big eddies céntribute to the development of the energy
spectra, and the small eddies set up turbulent properties of a medium in.
which the big eddies move. The turbulent motion of the big eddies .is con-
sidered homogeheous, stationary, isotropic, and compressible. 1In the cal~
culations of the turbulent properties, the motion of the small eddie§ is
assumed incompressible, nonhomogeneous, anisotropic, nonstationary and a

quasilinear approximation is applied to solve their dynamical equations.

For a modal transfer to prevail in the direction from big eddies to
smaller ones, it is necessary to provide a dissipation, or a drain., Such a
dissipation is represented by the viscosity in a collision dominated plasm_a°
However, in a collisionless plasma, the above molecular dissipatiop does not
exist, and its role is replaced by a collisionless dissipation, déuse& by the
electrostatic correlations, It is found that the collisionless dissiﬁation
has also the form of a product of a yorticity by a diffusion coefficient,
except the wvorticity involves the density rather than the velocity,-;nd the
diffusion coefficient involves the Boﬁm diffusion, rather than the molecular

viscosity. The formula of diffusion derived here confirms the Bohm formula
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with a large numerical cdefficient;

The study emphasizes a piasma where the electron temperature far exceeds
the ion temperature, and the wave length of the turbulent motion exceeds the
Debye 1e$gth. However, the reduced system of fundamental equations, from

! :
which th% spectra are derived are analogous to that governing gravity turbﬁ-
lence ié atmosphere and ocean with a Coriolis force., This suggests that the

method presented and some of the results obtained may be applicable to such

problems too,



1. INTRODUGTION

We propose to derive the spectraldistributions of turbulence and

density{fluctuations in a compressible plasma, with an externally applied

i
$

constant magnetic field, The induced magnetic fluctuations, which are trans-
versal electromagnetic waves are not taken into account. The plasma may be

dominated by collisions or may be collisionless,

The fundamental equations of motion and charge density are reduced to

a system of the type of the Riem.ann1 equations, with the addition of a Coriolis

force and a viscous force (Sec, 2), Some remarks on the solutions are given

in Sec. 3.

In order to solve the nonlinear equations of turbulence, we introduce
a method of "cascade decomposition'" into big and small eddies, and apply
a quasilinear approximation to the small eddies. As a result, the‘Big eddies
~ will determine the develépment of the spectra, and the small eddies will
shape up the appropriate turbulent properties in the medium for the big eddies
to evolve (Secs. 4,5).

After computations of the turbulent stresses and correlations from the
solutions of the linearized equations of small eddies (Secs. 6,7), the spectral

equations are derived (Sec. 8,9). A special emphasis is given to equilibrium

1B. Riemann, Ueber die Fortpflantzung ebener Luftwellen von endlicher
Schwingungsweite, Collected Works, 2nd edition, Edited by H. Weber, (Dover
Publications, Inc. New York, 1953) .



turbulence (Sec. 9). The spectral equations appears to be governed by
two types of functions: modal transfers and dissipations. They involve
an eddy viscosity, an eddy diffusivity, and the Bohm diffusion,derived in

Sec, 10.| The eddy diffusivity agrees with the empirical formula of

Heisenbe;:g2 , but the eddy viscosity is different in view of the strong
effect qf the magnetic field. It is found that in a collisionless plasma,
a dissipation can still be brought about by collective electrostatic fluc-
tuations , in the form of a product of a yorticity with a diffusion coeffi-
cient, the value of which is found to agree with the Bohm diffusion. The
spectral laws of_turbulgnce and density F and G are derived for the

following problems (Sec. 11):
(1) Convection of particles in a collisional plasma (Sec. 12.1)

F o~ k2

3

G ~ k-3/2 .

(2) Diffusion of particles in a collisional plasma (Sec. 12,1)

F~k-2;

G ~ y9/2 .

2 W. Heisenberg, Z. f. Phys. 124, 628 (1948) ,



(3) Dissipation of turbulence and diffusion of particles in a

collisional plasma (Sec, 12.2)

F o~ k~7 H
¢ ~ k7 .

F ~ k H
6 ~ k.

Note the difference of results in the problem (2) with collision aﬁd the
problem (4) without collision, The £factors in front of the éoﬁer la&s,

as well as the critical wave numberé characterizing the fall of the spectra,
are also determined, Further discussions and applications to similar problems

are found in Sec. (14).



2, REDUCED SYSTEM OF EQUATIONS FOR THE MOTION OF COLD IONS IN TWO DIMENSIONS

We consider ion waves in a plasma, where the electron temperature con=-
siderably exceeds the ion temperature, As the phase velocity of such waves
is mucﬁ greater than the ion thermal velocity, we can disregard the effects
from the spread of the ion velocity distribution, and consider the ﬁoment

equations for ions, in which the ion number density is

where N is the mean number density, and n is the density fluctgation° In
view of the high temperature and the high collision frequency, the electrons
will have a maxwellian velocity distribution, and a density following the
Boltzmann distribution, with n, as the ambiant number density of a quasi-

stationary nature. Thus the electron number density is

n, =1, exp(P/a) ,

where  is an electrostatic potential defined by

E = -a v,

and has the dimension of a velocity, E is the electrostatic force, which

is the electrostatic field multiplied by e/M , and

a = (K T;/M)%‘



is the phase velocity, based on the electron temperature T, , and the
ion mass M , with the Boltzmann gas constant K , Because of the small
value of the exponent /a , and the quasi-stationmarity of the ambiant

temperature n, , we can write approximately

n, = ni(l + P/a) .
The variation
Mn,-n ) o(n,-n_)
- i e M e
3(n, - ne) 5 Sn + R By

consists of a variation ®n and a variation &) , The variation 3n 1is
contributed by the ions, with the electrons as forming a stochastic back-
ground, and the variation &Y is contributed by the electrons only. Thus

-

.Ni'.r}.sd)

S(ni-ne) = oo - a 7 7

and the Poisson equation becomes

4ﬂe2 5
Ma 27T 2 N

-V 5¢ =

The case encountered in most experiments deals with wave lengths exceed-

ing the Debye length., In this case the yuasi-neutrality exists, the left hand

side drops, and the right hand side yields



5 = adfn(Ntn). (1)

In the following, we shall call 3 a density function, and its spectrum

will be called dens ity spectrum.

Now the equations of momentum and continuity for the ion motion are

uxas .
(5%+£-V)u=§v+§' NCNO-}':/VZE’ 5
3 -
(S€+5°V)n+(N+n)V-E‘—O.

Upon introducing the function ¢ from Eq. (1) , we can reduce the équa-
tions in the two-dimensional plane perpendicular to the external magnetic

field as follows:

2
ou
9 N - ., 2 i
( 3t + U )ui = -a +ow Iij uj-f*y 3 R (2)
j i ij
du.
9. -9 R

where the tensor Iij has its components

Lip=Ip=0 , Ljp,=-I,,= 1,

and the cyclotron frequency is

W, = eBO(Mc .



In the above momentum equation for the ion motion, we have neglected
the ion pressure; this is justified because the ion temperature is negligible,

compared to the electron temperature. An approximate viscous term,

v Vz u

has been added to represent a molecular damping of the ion motion, with a

constant kinematic viscosity yp , which may be dropped in a collisionless

plasma. Since the viscous effect is unimportant here, it is not the inten~-

tion of writing the viscous term in full, including the compressibility.-

.

The one-dimenéional degenerétion of the reduced system without the
magnetic field is recognized as the Riemann equations, used in gra&ity waves .
and rarefaction waves, We observe that a magnetic field corresponds to a
Coriolis force, Therefore the present treatmentmay be applicable to such

problems too.

3. REMARKS ON THE THEORIES OF TURBULENCE

Most theories on the energy spectrun deal with an incompressible,
isotroplc, homogeneous and stationary turbulent fluid. For the purpose of

simplifying the discussions, we may fix our attention to the following equa-

tion 2
> 3" oy,
(2ru 20 =0
ot i axj i aX2

or preferably its Fourier transform, used as a model of studying turbulence.
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"The inertia term, with the dimension uzlz‘(ﬁ is a length, and k = 1/4
] wave number), plays an important role in the inertial éortion of the
universal spectrum, which is then governed by a constant transfer of energy
between the modes or sizes (modal transfer) in an equilibrium turbulence.

It is written dimensionally as

3
%; = constant.

The spectrum F , related to the energy by

ow
el > = [a 7,
0
= const £2/3 s
is found to be given by the formula
F = const k-S/3 s

-

which is the spectral law of Kolmogoroff3 .

A Fourier decomposition of the model equation gives a Spectrai eQuatioﬁ,
involving a viscous dissipation and a nonlinear modal transfer. If the latter
is assumed to be equivalent to a new dissipation with an eddy diffusivity
postulated dimensionally, the same spectral law is obtained. This is the

method used by Heisenberg2 .

3 A.N. Rolmogoroff, Comp. Rend. Acad. Sci. URSS 30, 30L(1941) .
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The mathematical problem of turbulence is, of course, much more
complex, From the above model equation, or its Fourier transform, an
equation of velocity correlation of any order can be generated, but it
involves always a correlation of a higher order. Thus we have to deal
with a hierarchy of cofrelation equations, the resolution of which requires
a cutoff. A closed system is obtainéd, when the‘fouﬁth order is approximat-~
ed by a sum of products of second order correlations. Such an endeavor is
undoubtedly tedious, but the results prove‘even more discouraging, when a
negative spectrum is found by the method 4 « We shall not discuss other
more complex methods, Q

The above failure can be attributed to the strong interactions hetween
the four individual modes, so that they may not be decoupled. A decoupling
would be permiésible With an advanced state of randommess. We assume that
the randomness is increased by the following procedures:

(1) Instead of individual modes, we consider groups of modes; within

-

each group, and internal smoothing process secures a greater randomization,

(2) The velocity distribution in a turbulent motion deviates from its
snormal distributiop by the presence of small eddies at high velocities, It
‘follows that the group of big eddies in the cascade, being depleted of small

eddies, becomes quasi-normal,

& Y. Ogura, J, Fluid Mech. 16 , 33(1963).
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(3) The weak interaction between two separate groups justifies a
decoupling.
In the following we shall consider a simple cascade consisting of two

groups,. | It will be shown that the group of small eddies contribute in shap-

f
i
i .

ing edd? transport properties of the medium in which the big eddies are to
move , a;d the big eddies are responsible for the evolution of the energy
spectrﬁm. The small eddies, containing a negligible amount of enérgy, will
be treated by a quasilinear approximation, and the big eddies, as determined
by the hierarchy, will be Sufficientiy random to justify the decoupling of

correlations.

In the framework of hydrodynamic turbulence, the method conveniently
bypasses the hieraréhy and derives in a straight forward way the spectral

equation of He@senbergz and the eddy viscosity.

In the present problem of plasma turbulence, the hierarchy of big
eddies will retain mixed -correlations of big and small eddies to the fourth
order, and correlations of big eddies to the second order, If the higher
order éorrelations of big éddies are assuned to have a negligible contribu-
tion to the universal range of spectrum (small eddies), the hierarchy becomes

closed,
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4, METHOD OF CASCADE DECOMPOSITION

We write the velocity into two parts:

w(g)= u(x)+u'(x), (3a)
with
K ik x
ug () = [ ake’'RTu(x) , (3b)
0
and
wE) = [ aeEEurx) (3c)
k

representing the big and small eddies respectively. Here

o0
[ae 7,

:Iir: - k=0

Gy
[a N}
by
#

k -]

Jae+ [ax

0 k

the lasttwo integrals being volume integrals respectively within and outside
a sphere of radius k ., The same notations with indicies ( 0 ) and (')
will be applied to the variable @ . In this way the equations (2) determin-

ing u and Y are decomposed into the following :



For the big eddies

dugs

dt

[

L]
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2
1) du du!

0 01 ' i
~aT—+@ I, u, +yp - < —=>
ox, c “ij 0j BX§ jaxj Kk

; 4)
_a@—:—lugﬂi < |_.a—i>b-:->
ox joox. "k 7
k| k|
fad
i, 7
i
2
du! ou, ,
N S 2 'L 02
at aBX. +(.:.>i11J uj u! P
i k|
2 1 ]
3 uy ouy du}
- | PSS | —Y
+[v 5, Wt <u > ,
' (5)
eI duy - :
- u! —9 - —-—j... l..a_.dl.'_ :_@}.b_f_
- +le 5 T ax.>kJ >
3 h| h|
’I
i
9. 9
3 T Y . -



- 15 -

The terms

ou!

. gél
<u! —=> and < u! 2 > (6)
3 axj k ; 3y Tk

in Eqs. (&) are called eddy stresses, representing the effects of the motion

of small eddies upon the bigger ones, and they are to be calculated from

Egs. (3).

The motion of the small eddies are essentially very different from the

bigger ones. Therefore separate assumptions are introduced, In studying the

motion of the small eddies, the assumptions are :

(i) Small eddies move rapidly in a gquasi-stationary backeground -

Choose a length scale k-l separating the two groups of eddies. An

average over such a length interval, denoted by

R <oo. >k

will average out the fluctuations of the small eddies, but leaves intact
the motion of the big eddies. However, an average over a long interval of

length £y + =, denoted by

<ec'>

.

will even average out the fluctuations of big eddies,
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The application of the averages enable us to derive the separate equa-
tions of motioms for the small and big eddies, from the equation (2) of the

total motion.

With respect to the rapidly varying motion of the small eddies, their
background motion, as provided by the bigger omes, can be considered as
quasi-stationary, i.e., it varies slowly in time and space. Thus the motion

of the small eddies is anisotropic, inhomogeneous, and non-stationary.

(ii) Quasilinearization of the equations of motion of the small eddies

The swmall eddies contribute in eddy transport properties, and do not
embody the major energy. Therefore they are studied by a quasilinear approxzima-
tion. It should be valid in the universal spectrum, i.e, fof‘sufficiently

large k .

(iii) Small eddies are incompressible and inviscid

The main compressibility effect 1is exhibited by the big eddies ,
although the small eddieé have a secondary compressibility effect in
their role of producing eddy stresses, this effect together with the

damping are meglected,
Now the assumptions concerning the motion of the big eddies are:

(iv) The turbulent motion of the big eddies is isotropic, statiomary
and homgogeneous
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(v) The big eddies move in a locally isotropic and homogeneous

~medium

The small eddies prescribe eddy transport properties, which are locally

isotropic and homogeneous,

5, SIMPLIFIED EQUATIONS OF MOTION

With the use of the assumption of quasilinearization (ii), the assump=
tion of incompressible and inviscid small eddies (iii), the equations of
motion of small eddies (5) are simplified, by dropping the terms between

the brackets, giving

du! ' du
E~£ -w I, u; =-a 2L u! -2 s
t t ij ] ox, %,
L ]
)
a' _ ., %

The equations of motion of the big eddies (4) remain nonlipear,

compressible and viscous,

By multiplying the two equations (4) by Uy and ¢0 respectively,

we formulate the following energy equations

: ou,., ou!
2 2 . 0i 2 . o4
X S <Y >=<E, o> - < ( axj)>_-<u01v<uj axj >.>
3 .2 ou; 3 1 (Ba)
1 -9 = - —21 - ' = . ;
2Bt<¢0 a < axj z/)0> <aj)o<uj axj >_k>+a<}3,o go$o>,
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On the right hand side of the last equation, the first term is transformed

Ainto - <E 4.1 0> s and the last term, which contributes most to the non-
universal range (big eddies) of the spectrum, is assumed negligible in the

universal range. Hence

) 2 : !
L l = - . - L
55 < ¥p > <Egy* 80> <zp0<ujax>k> (8b)

As shown later in Sec, 7, the diffusion

can be calculated on the basis of

without the intermediary of hierarchy of equations of big eddies,
The eddy stresses involved are calculated by means of the equations of

motion of the small eddies (7), giving the solutions:

Buos t t ‘
ul(t) = - e, Jaer pj(eet) uice) + Jdet B (e-t') EI(ED),
) o 9)
gb‘(t)-—---?gfp- fdt' ul(e') |
o . 3 )
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-In the above Lagrangian fqrmulatiog, we have written
u&(t’) to represent . ug[t', E:(t')] .

The same representation holds for E;(t’); Further,

Psi(t) = Ssi cos wct+ Isi_,'suf mct'

and Eo +« , The initial value at t, -+ ® are dropped, as they are not

Q0
correlated with their later values at t . It is to be noticed that the

term P_, for s # i will not contribute in the following analysis,

6. EDDY STRESSES

The eddy stresses (6), as QCCufing in Eqs.(4) and (8) are now computed
from the solutions (9). "Evidently we shall expect to obtain a large scale
contribution (which does not vanish by a large scale average) and é small
scale contribution (which vanishes by a large séale average), We shall be
concerned with the latter contribution hefe, while the former will be
referred to Sec, 7. The stresses play an important role in the modal transfers

across the spectra,
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6.1 Calculation of the Turbulent Stress < ui ug >k -

In the evaluation of the turbulent stress

<u} u:'l > = - z:s }idt' Pbsi(t—t') <u]':(t')u5(t) >
to '
£
+ Jaet P (et) <EIED uwi(D)>) (10)
o

from (9), we may infer that the two integrals are associated with the

gradients
auOs and BEGS
r bxr
respectively.

In view of the local stationarity and homogeneity, the first imtegral

issaccording to (v ) :

£ -
' Y Vgt '
j';lt P, (t-t') <ul(eh) uj(t) >
ty
= Y Bsi Brj H (11)

where



- 2] =~

©
- ' . ' :
v =% [d7 cos wr<u(0). ui(m) > .
0 .

(12)

By using (9), the second integral of (10) is explicitly written as

t . ,
1 et et '

[ at P, (e-t") <E!(t ) uj(t) >

o

am,, t t
= S ' et EPRY Vet v
T T [ ae P (t-t") ‘]" dt" < ul(t") uj(t)>k

ty £,

where the double integral is transformed as follows:

t t!
. ) t 1t i ! - 1 1L 4
[ ae J at P (e-t') <ul(e )uj(t) >
o 9
® @ »
- ! 1" ! 1 L]
[ar [ar Bgi (T) <up(0) ui(r™ >,
o 7!
t-t' = ¢'
t"t" = T" ;

& ¢ o1
" tye

Jart < ul(0) ui(r > Joarre ey,

0 0

L]

(135

(14)
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o]

= -1 ' ;" (e tt | . "
= }wc fd'i‘ '<ui(0) uj(’r )>, (A -cosw T")YA,
0
= v wta s (15)
k "k "t si rj °? :
with :
‘_;/’/Jl 2 s # 1 >
A1 T~ 0 » s= i ;
/1 ? r= 3
3 =
J | \\ O s T 7‘_{ J ;
and
- )
o= E[dr<uw (0w (r)>. (16)

0

Hence after substitution”of (11) -~ (16) into (10), we find

ou oE

Os Os -1
- L 1 = r—— - PR ot -
Sy oug > Y &, 851 T (1) o, W Loy

and consequently

ot .

_9 f ot . 1o —0i
<uOi ij <ui uj_>k> <<ui uj >k ij> s

i
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where the notatioms R, , Ib

for the sake of abbreviation of writings. They are

, representing vorticities,are introduced

ou..,
~ 0i,2
RO = < BX.) Z
J
oF au'. .
_ Os 0oL -1
Ib = < o, ox, > aé Aéi ?
. B 3 .
o .. Ou
_ 01 Os =1
= < Bxi ij > @, Aéi .

We remark that Ib results from a shear correlation, and can be dropped in

the assumption of the isotropy of the big eddies. Hence we find simply

B it sy 17y
< uOi ij < ug uj >k > = Y Ro R _(17)

which is the modal transfer function in the development of the turbulent

»

spectrum,

6.2 Calculation of the Density Stress < uj B¢'/axj >1

With the aid of (9), and the assumption (v), we find simply

N : 3
| = =2 1 !
<_1v.ljaxj>k axj<uj¢>>k,
T,
=N ”’é’g ’
%5
and consequently .
o 2! -
<P % TS N (18)
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which is the modal transfer function in the development of the demsity spectrum.

Here

Xy 2
_ 0
Jg =< ( 5;; ) >

is the vorticity function for ¢0 .

7. ELECTROSTATIC DIFFUSION

The time evolution of the turbulent energy and the density fluctuations
(8) is governed by the eddy dissipations (17) and (18), and the electro-

static diffusion

We note that the second of Egqs. (4) for the demnsity fluctuations can

be rewritten in the form -

b, - L a
_..-——-0.._ 3 = e 2___(_)3‘ LIS 1
"% TRoRo 7T T SRR

By taking a large scale average, we find

O
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_Thus the calculation of the diffusion is reducéd to the calculétion of the

correlation <E' - 2j> of the sméll eddies, bypassing-the necessity of

going into the hierachy of equations. The calculations are based upon (9)

and Willrthus select the non~vanishing contributions from the large scale

averages., We shall réwrite the second of Eés. (9) in the form |
Eos

t
Ej(t) = - =~ [de’ uiCe") .
. j &

0

Taking the product between the two equations (9), we obtain the large

scale average

@ = v, ]
% = <E-u>
oE .. du Tt t
= 01 ____Q§_. 1 [} ! 1 ' I n
< =, o, > [at' [at P, (e-t') < ul(t ) hj(t ) >
t B
t .
) - s At 1 s '
+ [ a P (t-t!) <E(t!) Ef(t) > .
t

0

After a change of variables (14), the double integral becomes

t t
+ 1 " g1 g1 [ FIRT;
f‘ de' [ at P, (E-t") <ul(t") uj(t ) >
o to .
q) (o<

= t 3 gt t ' -
= Jar [are () <w0 ulr- >,
0 0
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«© ow .
= 1 P t t '
Jan Jar e () <up() wim >,
-l : ?7 ’
= 2y WA,
U % Ssi mj

Hence, after substitution, we obtain

{ve]
= T o H »
& = [ar<g (0) « E'(T) > cos f + 2y Ty -

‘ 0
1f Ib , which depends on the shear correlation between E 0 and u is
again left out, on account of the isotropy, @k simplifies to

0 o v
in . H 1
@ = fd'r < E'(0) E’ (1) > cos WT (19

0

-

and becomes the electrostatic diffusion in the velocity space,

8. SPECTRAL FUNCTIONS

Upon substituting from Eqs. (17) - (19) of the stresses and the
diffusion into Egs. (8), we obtain the following equations for the energy

and the density fluctuations:
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'
|
A
o
N
Vv
i

(20)

D g2 o - -
-'at<‘1’0> = Ny &

AT T

where vy > Alt and ik have been defined earlier by Eqs. (12), (16) and
(19) .

In terms of the Fourier representation (3b), the energy is

2
%<ug> = % lim Idi(%ﬂ) PQ(')&)OIL(N) »
A > o 0
0 0
k
= ~(‘dkF(k) ;
0

where F is the spectral function of turbulence. In the same representa-

tion we find the vorticity

k
2
R, = 2J‘dkk F .
0

The density counterparts are

) k
5<y >= [akGx) -,
' 0
_ k.o,
J0=2!rdkkG .
0
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The electrostatic enmergy in terms of the potential function is:

2_ 2 by 2
= a JO .

=
|

For © , we reduce to

=
]
8
N’
#
o
e

and

“
FanS
=
]
8
N
]
'

9., SPECTRAL EQUATIONS FOR EQUILIBRIUM TURBULENCE

We shall express the équations of turbulent energy and density
fluctuationsr(ZO) in terms of spectral functions. That portion of éhe
spectrum, related to the”wave numbers smaller than the universal range,
depends on the size of the experimental vessel, and will not be considered

here.

Further we introduce the rate of wviscous dissipation
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Then we can reduce Eqs, (20) to the following

(v + uk) Rg + <I>k = ev s (21a)
kaO—cbk= o . (21b)

The terms

Vi Bo and kkJO

represent the modal transfers,and the term ¢ represents the electrostatic

. k
diffusion, which produces electrostatic fluctuations by compressibility at
the expense of the turbulent kinetic energy. Thus we see thét C@k , which
occurs in opposite signs in Eqs. (21la) and (21b) plays the role of a new
turbulent dissipation in the turbulent energy equation (2la), and the role
of a supply of énergy to set up deﬁ»sitytfluctuations in the density Aeq\;\a—

tion (21b).

10. EDDY VISCOSITY, EDDY DIFFUSIVITY AND BOHM DIFFUSION -

10.1. Eddy Viscosity and Diffusivity

Applying a Fourier transform, we can write

. © 2
< P> = (Y oaluepl
0

il

2 [ dk F(e k) ;
: ,
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where

~ , 2
F(t,k ) = %( %)2 2nck| u(t,k )|

is the spectral function of turbulence, and 2,80 is the interval of length

used in the average.
,f
In ‘a similar way, we have

f
)
<« o0 . 1
X, w2 a 2 -1(w—§ﬂgo)7° .
<glt', el > = (7)) [ [dwlu'wrl e
«w «©

Here
T T=1t-t',
x=x bk o
0
Thus
[av]
po= - Id?<u‘(t'x') u'(t,x)>cos WP
kT Th ST RAELR AR e,
2. ® o 2 ® ~i(wrk u )7
- L x. .= ; ~ ~D .
= 7 T(Z) Idlr&‘rdw]}y(w,}&)! 'cj:d"r‘e cos e,gbc'?
-0 -0 =
‘ 2 @ 2
T ® o, X
=3 7 () [ae2nk g k| ; (22)
k .
with

w, = |kyy+w .
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In the inertial subrange, the spectrum

s 2
71y (@ ;X
may be assumed to follow a power law

=T

6')k .

If furthermore , we assume, as done usually, that the inertial subrange

represents the energy containing portions of the spectrum, then

. 2 .
X(m-1) <lu(t)k)! > wkl >

i

%!u(wk: k)l 2

where ¥ 1is a numerical coefficient of the order of unity. By the applica-

. Z Lo . . . : .
tion of the Xelmogoroff”™ similitude consideration, the numerical coefficient

-

m can be also determined and is
m = 2 .

“Thus upon substitution into Eq. (22) , we find

v = % Jac BQE (23)
k

with
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Now 0 will be evaluated approximately. Writing it in full in

Eq. (23), we have

@ , k! 1
2 2 ~%
N v = Xy J k' F(ekY) [, + 2T [kt F(R]
j k 0

The intégrand consists of a factor F(t,k') decreasing rapidly with k' ,
and a factor with brackets which varies slowly in k' , Assuming a quasi-

stationary spectrum

F(k") = F(k') |,

within the brackets, we obtain

o
X1 , :
ve= o [ axt Feeety w,>>Ry , (24a)
c
k
valid in the inertial subrange, and
- o . %
v = X, [ax F@Y/MKR?T T, w, < <Ry, (24b)
k
X, = x N2
valid in the dissipative subrange.
The eddy diffusivity is obtained by putting w, = 0, and is
© i
A, = ak' [F(k')/k'3]
W = Xp  Jak' FGRD/ERTT (25)

k

The formula (25) is in agreement with thdt proposed empirically by Heisenberg2 .
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10.2 Bohm Diffusion

The above arguments and calculations used for vy and kk can be
repeated for the evaluation of the electrostatic diffusion @%. in the

velocity space. We find

o
2 2 - -1
@k = 2X; a fdk' 1;' G(k") W
k

,R(J—JO) , when w, >> RO . (26a)
N 2 & E P
V2a® [ dk k% GF™? , when w, <K Ry, (26b)
k .
The coefficient of diffusion A is found to be
2 -1
A= ‘Xlé W, . e

It does not arise from the molecular motion , but from electrostatic and
' | 5
_collective fluctuations, It agrees with the formula found by Bohm™ . How-

ever, the numerical coefficient here is greater than the Bohm ccefficient 1/16 .

> D. Bohm, "“The Characteristics of Electrical Discharges in Magnetic Fields",

edited by A. Guthrie and R.K. Wakerling, Chap. 2, Sec. 5. (McGraw-Hill
Book Company, Imc., New York, 1949).



The existence of the coefficient of Bohm diffusion A entails a

rate of dissipation

;
!'

for the density spectrum, similarly to the rate of dissipation sv for
i ' -
the turbulent spectrum.

11, CASES OF SPECTRA WITH AND WITHOUT COLLISIONS

—We-shall distinguish the following subranges in a collisional and a
collisionless plasma. The collision is represented by the molecular
viscosity y . It is to be noted that in a collisionless plasma, the
density spectrum may be in the diffusive subrange, with a Bobhm diffusion
originated fréé electrostatic fluctuations.

(a) Inertial and Convective Subranges in a Collisional Plasma

-

Here, as the collision is dominant
f§v>>v‘:l)L » or R >>J .
The wave numbers are small such that
>y , and )\k>> A,

Vi

and the spectra F and G are not influenced by p and A .
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(b) Inertial and Diffusive Subranges in a Collisional Plasma

Here again

€& >¢& , or R>J .
v A

!

Now we qbnsider the development of the density spectrum in a diffusive

subrangé range,

!

A, << A,

under the background of a turbulent spectrum in its inertial subrange

Vk >> v .

(c) Dissipative and Diffusive Subranges in a Collision Dominated
Plasma

As the collision prevails, we have

-

€,>>¢8 , or R>>J

too. Now both spectra are in the subranges of high wave numbers:

v <<v, and lk<<h .
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(d) Diffusion of Particles in a Collisionless Plasma

Here as the collision is small or absent, we have

6A >> Ev. .

Like in case (b), we consider here also the develdpment of the density

spectrum in a diffusive subrange

A <<A

under the background of a turbulent spectrum in its inertial subrange

vk >> vy .

In all the inertial cases (a), (b) and (d), the turbulent spectrum

is in the inertial subrange, so that

2

Ry <<d,

0

and yk‘\is determined by the formula (24a), so that the spectral equations

(21) simplify to

H
)

g™ R0 + lk J0 = v o,

. o (28)
A+2) I, =& .



- 37 -

The terms
VkR 0 and )\kJ 0

are called modal transfer for turbulent and density spectra respectively,

1
11
The terms

; uRO and X J

are the collisional dissipation by viscosity and the collisionless dissipa-

tion by Bohm diffusion respectively. Finally

€ and €&
14

are the rate of dissipations for the turbulent and density spectra,

In the collisional case (a) and (b), further simplifications can be

made by noting that
)\kJO ,=' AT - JO) << 6!) .

When this term is neglected, the system (28) reduces to

VkRO = E'v ’

(A +7\k)Jo'= 8}‘ .

(29)

(cases a, b))



- 38 -

The turbulent spectrum is completely determined by its own modal transfer,
to be drained directly into a molecular dissipation, without the

intermediary of an electrostatic diffusion .

In the case (c), as the turbulent spectrum is in the dissipative sub-
range, we have
2

Ry > > o)

and Ve > lk. are governed by the formulas (24b) and (25), so that the

spectral equations (21) becomes

(e NI RG+ N Tg = &,
Az ) .& ) (30)
- ' % npT2
M Jg=w2a" [k k¥ oF .
k
(case ¢ )

12, COLLISIONAL PLASMAS

12.1 Convection and Diffusion of Particles in a Turbulent Plasma
with an Inertial Spectrum (Cases a and b ) ’

The convective and diffusive subranges of the density spectra under
an inertial turbulent spectrum, coverning cases (a) and (b) are governed by

Egs. (29). They can be solved separately, We find

F o= okZ ., (31a)
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"This spectral law will fall by ﬁhe molecular dissipation at the critical

wave number

2%
k = (& R
v ( v/wc v )
Furtheriwe find
-2
c e o1 (PP
G-8X2 67\°! 1+(k3) k ‘,
(31b)
9 %  -=3/2 )
/8}(26)\a k s fork<<kB 3
"\)‘2 e o
2 HY -9/ )
3 )\2 k , for k>> kB ;
where _ EV wc)lé
o = ( 2)(l ;
and 2
) &aX; 1/3
ky = (—5)
9A

is a critical wave number, characterizing the transition from the inertial

subrange to the diffusive subrange.
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12.2 Dissipative and Diffusive Subranges (case c) '

By differentiating the system (30) with respect to k , the derivative

being indicated by ('), we have the equations

XQRO + hiJO + (p + bk) Ré + kab = 0,

(222 1 E ot
Mg+ NJo = 22" & eF ,

which, upon replacing

R., J, by R,J,

0’ "0

and neglecting lk’ J as compared to yp , R , are reduced to

Xﬁ? + be = 0 R

»

1
e

i
NI = - 242 KE@rE

The asymptotic solutions for large k are

b}
il

2 .
xR0 K7
(32)
2 3 -9 '
G = X:;(X.R/21) k .
XolX; T2a2
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13. DIFFUSION OF PARTICLES IN A COLLISIONLESS PLASMA (Case d)

Like in case (b), treated in Sec. 12, the problem is governed by the
same equations (28). However, the modal transfer is now not drained by a

molecular dissipation, absent in the present case, but by a Bohm diffusion,

We write the system (28) in the following form

XJO-ukRO = AT ,

(33)
AT .

(A + xk?JO

In order to resolve the system (33), we differentiate with respect to

k , and obtain

Mg yR < Ry = 0

|
(=

1 1
Adg+ XM Jg + N Tg =

For the diffusion to be effective, the processes in J, must have

0

developed to sufficiently large wave numbers, so that we can replace JO

by J, and neglect

kk.< <A,

and RO in the inviscid F spectrum. Thus we reduce to

'3

i
[w]

1 L.
Mo - uRy

=
O
o+
o
il
o
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The solutions are

F = ( i; Ja%) k s
34)
. L X ; )4/3 e (
= —= ( <& Jw .
Zaz Xi ¢

The spectral laws (34) will fall by collisionless dissipation at a critical

wave number

2 5‘ 1/6 A .

while the life time of the eddy of this critical size is

£ = (Jué)“I/B ) (36)

14, DISCUSSIONS

14,1, Dimensional Considerations

The second of the spectral laws (34) for a collisionless plasma seems to
agree quiie well with experimental results., It would be important to further
check experimentaliy the amplitude, the critical number of the fall (35), and
the life time (36), especially as to their dependence on the rate of turbulent

dissipation £X .
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As the density spectrum G assumes the dimension

c - 12
= b
azt4
a spectral law
1 4 .-5
G = ;5'“% k | (37

has been suggested for experimental usage6’7’by choosing

while the correct life time should be

t = (ch)"l/3 ,
yielding the spectral laws (34). The empirical law (37) appears te be not
generally acceptable, as it is doubtful that the amplitude of the density
fluctuations could be independent of any turbuleﬁt strength. Since agl is
not the only scale of time, the dimensional formulation of the spectral com-
position, without a dynamical foundation, suffers from thé great arbitrariness

in the multitude of choices of plausible formulas,

.

6
7

F.F. Chen, Phys. Rev. Letters 15, 381 (1965).
N. D'Angelo and L. Enrigues, Phys, Fluids 9, 2290 (1966).
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14.2, Density and Potential Fluctuations

In most experiments it has been assumed thét the density fluctuations
behave like the potential fluctuations. This is indeed true in the present
system of cold ioms in a bath of hot electrons where the wave lengths are
greater then the Debye length. More épecifically, if G assumes the k-5
spectral law, it will be so with the spectrum of density 4n(Nim) . However,
in a one-fluid model, where the electrons are absent, the Poisson equation
indicates that the term involving the Debye wave number drops, and we would
have

2 2

4 - Lye
ke = ‘( e ) G

where G is the spectrum of <n2>,'giving the law

const knl

(]
]

corresponding to : -5
const k o

3]
it

14,3.. Turblence in atmosphere and ocean

The system (2) is formally analogous to the Riemann1 equations with
the addition of rotation and dissipation, for a compressible gas with a
ratio of specific heats equai to unity. The turbulent motion in atmosphere
with temperature fluctuations and uunder a Coriolis force is governed by the

same system, and shows under certain circumstances a spectral law (3la)
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in agreement with observation, The fluctuations in velocity and in height
on the waters of the ocean with a Coriolis force'also satisfy a similar
system of equations. Those analogies suggest that the method of solving
the nonlinear system of equations of turbulence and even some of the results
presentéd here, may be applicable to such problems, and perhaps may pave the

way of approaching the more general problem of compressible turbulence,

14 4. Collisionless dissipation mechanism
As sﬁown by the Navier-Stokes equation of motion and the equation of

continuity for a compressible fluid, tﬁe molecular viscosity provides a
colliéional dissipation for the turbulent motion, but since the equation of
contiﬁuity does not contain a molecular diffusion, one asks what éould Be a
dissipation mechanism for the demsity fluctuations. By means of the cascade
decompositioﬁ, proposed in Sec. &, an electrostatic diffusion by collective
fluctuations can account for a collisionless dissipation. Like in the colli-

sional cadse, the latter dissipation

AJ, or AT

is also equal to the product‘of a vorticity by a diffusion coefficient. The

diffusion coefficient X is found to agree with the Bohm diffusion '
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